Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Chee-Keng Teh

Chee-Keng Teh

Sime Plantation R&D Centre, Malaysia

Title: The path from genomic discovery to commercial planting in oil palm

Biography

Biography: Chee-Keng Teh

Abstract

Statement of the Problem: The objective of oil palm breeding is to produce high-yielding materials. In Southeast Asia, thick-shelled Deli dura (D) and shell-less AVROS pisifera (P) are maintained separately as maternal and paternal pools, respectively. The reciprocal recurrent selection (RRS) of elite parents is based on the performance of thin- shelled tenera progeny derived from DxP crosses. However, large- scale DxP crossing to evaluate every individual of D and P is impossible due to resource constrains. Furthermore, RRS required more than 20 years completing a selection cycle. The snail’s-pace breeding will put the oil palm industry at risk, when the planting materials fail to cope with drastic changes in the environment. The paper will cover the experience of developing genetic tools and prediction models for early selective breeding. The challenges of translating the genomic discoveries to commercial deployment also will be discussed.

Methodology & Theoretical Orientation: Sime Darby Plantation sequenced the oil palm genome in 2009. A 200K-SNP array, OP200K was then developed after quality filters. The array was used for genome-wide association study (GWAS) and followed by genomic selection (GS) to further improve prediction accuracy. To facilitate commercial deployment, a high-throughput pipeline was also developed in house.

Findings: About 6 million SNPs were identified throughout the genome, representing important breeding stocks in the industry. Important QTLs for bunch component and oil yield traits were successfully detected. The QTL profile was used as the basics for GS modeling, which achieved >0.5 of prediction accuracy.

Conclusion & Significance: The density-reduced SNP panel with minimal accuracy trade-off is now available for selecting the best yielding seeds in Sime Darby Plantation. The first 100 ha planting of Genome Select seeds with estimated 16% of yield increment were launched in April 2016. The upscaling of Genome Select seed production is currently taking place