Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Parwinder Kaur,

Parwinder Kaur,

The University of Western Australia, Australia

Title: Advanced reference genome of Trifolium subterraneum L. reveals loci governing important agronomictraits for biotechnological improvement of forage legumes

Biography

Biography: Parwinder Kaur,

Abstract

Subterranean clover is an  important  annual  forage legume, whose diploidy and inbreeding nature make it an ideal model for genomic analysis  in  Trifolium.  We reported a draft genome assembly of the subterranean clover TSUd_r1.1. Here we evaluate genome mapping on nanochannel arrays and generation of a  transcriptome atlas across tissues to advance the assembly and gene annotation. Using a BioNano-based assembly  spanning 512 Mb (93% genome coverage), we validated the draft assembly, anchored unplaced contigs and resolved misassemblies. Multiple contigs (264) from the  draft assembly coalesced into 97 super-scaffolds (43% of genome). Sequences longer than >1 Mb increased from 40 to 189 Mb giving 1.4-fold increase in N50 with total genome in pseudomolecules improved  from  73  to  80%. The advanced assembly was re-annotated using transcriptome atlas data to contain 31,272 protein-coding genes capturing >96% of the gene content. Functional characterisation and GO enrichment confirmed gene expression for response to water deprivation, flavonoid biosynthesis, and embryo development ending in seed dormancy, reflecting adaptation to the harsh Mediterranean environment. Comparative analyses across Papilionoideae identified 24,893 Trifolium-specific and 6,325 subterranean-clover-specific genes that could be mined further for traits such as geocarpy and grazing tolerance. Eight key traits, including persistence, improved livestock health by isoflavonoid production in addition to important agro-morphological  traits,  were  fine-mapped on the high density SNP linkage map anchored to the assembly. This new genomic information is crucial to identify loci governing traits allowing marker-assisted breeding, comparative mapping and identification of tissue-specific gene promoters for biotechnological improvement of forage legumes.